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The Hamiltonian mean-field model has been investigated, since its introduction about a decade ago, to study
the equilibrium and dynamical properties of long-range interacting systems. Here we study the long-time
behavior of long-lived, out-of-equilibrium, quasistationary dynamical states, whose lifetime diverges in the
thermodynamic limit. The nature of these states has been the object of a lively debate in the recent past. We
introduce a numerical tool, based on the fluctuations of the phase of the instantaneous magnetization of the
system. Using this tool, we study the quasistationary states that arise when the system is started from different
classes of initial conditions, showing that the new observable can be exploited to compute the lifetime of these
states. We also show that quasistationary states are present not only below, but also above the critical tem-
perature of the second-order magnetic phase transition of the model. We find that at supercritical temperatures
the lifetime is much larger than at subcritical temperatures.
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I. INTRODUCTION

Many examples of long-range interacting systems can be
found: self-gravitating systems �1�, unscreened Coulomb
systems �2�, trapped charged particles �3�, wave-particle in-
teractions �4�, vortices in two-dimensional fluid mechanics
�5�, magnets where dipolar effects are dominant �6�. The
study of both equilibrium and out-of-equilibrium properties
of systems with long-range interactions poses several chal-
lenges, that in recent years have been faced through analyti-
cal and numerical methods �for a review see, e.g., Ref. �7��.
It has been shown that different statistical ensembles can be
nonequivalent, so that the equilibrium states which can be
reached by fixing certain thermodynamic parameters may be
different from those obtained fixing other thermodynamic
parameters. Rigorous results have been produced in this field
�8�. The approach to equilibrium reveals the existence of
transient states whose lifetime can diverge in the thermody-
namic limit �i.e., when the number N of degrees of freedom
of the system goes to infinity�: these states can be called
quasistationary states �QSS�, and it is worth underlining that
they are not metastable states, i.e., they are not stable local
extrema of thermodynamic potentials, but their robustness is
of dynamical origin �7�. Moreover, the characteristics of the
QSS can depend on the initial conditions of the system. An-
other very interesting dynamical property is the breaking of
ergodicity in microcanonical dynamics �9,10�. These facts
imply that a deep understanding, in long-range systems, of
kinetic effects, and in particular of the features of QSS, can
be achieved considering both thermodynamics and dynamics
and their intricate relationship.

This program has been pursued for several years on a
simple model originally introduced in Ref. �11� and called
the Hamiltonian mean-field �HMF� model. The model is an
approximation of one-dimensional gravitational interactions,
and it is also closely related to the Colson-Bonifacio model
for free electron laser �12�. The Hamiltonian is

H = K + V =
1

2�
i=1

N

pi
2 +

1

2N
�
i,j=1

N

�1 − cos��i − � j�� . �1�

It refers to a system of N globally coupled rotators of unit
mass, each one being described by the angle variable �i
�−������ and by its conjugate momentum pi �that in the
following, for short, will be denoted as the velocity�. The
coupling constant is scaled by the number of rotators. This
quite unphysical rescaling �the Kac prescription �13�� is nec-
essary to ensure extensivity of the thermodynamic potentials,
but it is not dramatic in the study of dynamical properties,
since, as long as N is not infinite, it is equivalent to a rescal-
ing of time.

The statistical mechanics of this system can be exactly
solved, both in the canonical �11� and in the microcanonical
�14� ensembles, that, for this model, have been shown to be
equivalent. The system has a ferromagnetic second-order
phase transition at a critical temperature Tc=0.5, correspond-
ing to a critical energy per particle �or energy density�
Ec /N=�c=0.75. The magnetization, that spontaneously at-
tains a nonzero value below the critical temperature, is the
modulus M of the ensemble average of the vector

m = �mx,my� �
1

N
��

i=1

N

cos �i,�
i=1

N

sin �i� , �2�

i.e., M = 	M	, with M= 
m�, is positive below the critical tem-
perature. The lower bound for the energy density is �=0.

Contrary to the equilibrium case, the out-of-equilibrium
behavior of the system presents a great richness. This work
aims at presenting some results concerning the dynamics of
the HMF model. We describe the properties of the QSS that
the system exhibits when the initial conditions belong to dif-
ferent classes. In the remainder of this section we give a
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short summary of the results, connected with those presented
in this work, that have already been obtained.

Microcanonical molecular dynamics simulations have
shown that, for energy densities slightly below the critical
value, QSS are present, whose lifetime diverges with a
power of N. This implies that, if the thermodynamic limit
N→� is performed before the infinite time limit, the system
remains trapped in the QSS. While in the QSS, the distribu-
tion of the velocities pi of the rotators is not Maxwellian
�16�. The energy density that has been mostly considered is
�=0.69; at equilibrium M �0.31, corresponding to a tem-
perature T�0.475. In the simulations, the behavior of M is
studied through the observation of the dynamical variable
m= 	m	, while, as usual, the temperature is studied through
the observation of the dynamical variable 2K /N, i.e., 2 times
the kinetic energy per particle �let us use, for this dynamical
variable, the same symbol T of the thermodynamic tempera-
ture�. It should be noted that the study of m in the microca-
nonical simulations is equivalent to that of T, since the con-
served Hamiltonian �1� can be written as

H =
N

2
T +

N

2
�1 − m2� . �3�

The simulations have shown that the details of the dynamics
in the QSS depend on the initial conditions. The most studied
classes of initial conditions are those in which the initial
value of m is either 0 or 1 �obtained with a uniform initial
distribution of the �i or setting all �i equal to zero, respec-
tively�, while the velocities pi are uniformly distributed in a
range whose extension is determined by �. When m�0�=0 it
has been found that the lifetime of the QSS diverges as N1.7

�15�, while in the case m�0�=1 this divergence is linear in N
�16�. In both cases the magnetization m in the QSS con-
verges to zero for increasing N, although differences in the
details of this convergence are observed. For example, start-
ing with m�0�=1 the magnetization in the QSS, for a given N
value, depends on the initial conditions �i.e., on the different
realizations, for finite N, of the uniform velocities distribu-
tion, see Fig. 1�; it is then necessary to perform several runs
to obtain an average value. Starting from m�0�=0 the differ-
ent runs are much more similar.

The observed non-Gaussian character of the velocity dis-
tributions has given rise to a lively debate on the character-
ization of these distributions. In particular, numerical inves-
tigations have concerned the tails of the distributions, to see
if their decay is exponential �or even faster� �15�, or if the
decay could be fitted �17� to the expressions derived in the
framework of nonextensive thermodynamics �18�, that pre-
dicts tails decaying with a power law. The controversy has
extended to the study of the anomalous diffusion �19,20�,
and fits to nonextensive thermodynamics expressions have
been done also for the cases where the initial magnetization
takes values between 0 and 1 and for the model where the
coupling between rotators has a slow decay with distance
�21� �see Ref. �22� for the generalization of the HMF model
and a detailed study of its equilibrium behavior�. In this pa-
per we are not directly concerned with the characterization of

the QSS in terms of ordinary Boltzmann-Gibbs �BG� or non-
extensive thermodynamics, and we limit ourselves to the fol-
lowing remarks.

Recent analytical calculations have shown that it is pos-
sible to interpret the QSS of the HMF model within a dy-
namical approach based on the Vlasov equation �15�. In fact,
it has been proved �23� that, in the limit N→� the micro-
scopic one-particle distribution function obeys this equation
for a class of mean-field models, to which HMF belongs.
Following the same line of research, it has then been argued
that the QSS are formed in a short time through a fast relax-
ation to a state that maximizes an entropy functional of fer-
mionic type �24,25�, similarly to what happens for gravita-
tional systems �26�. The approach to the QSS and its short-
time behavior seems well reproduced by this theory,
although some details need further explanations �25�. The
long-time behavior, with the slow approach to the final BG
equilibrium state, is much less understood from an analytical
point of view, although again the Vlasov equation can be of
help in justifying the very slow relaxation �15,19�.

It is this long-time behavior that we are concerned with in
this paper. We do not offer new analytical tools; rather, we
study in details the characteristics of the velocity distribution
functions of the QSS that arise when the dynamics starts
from several different classes of initial conditions. The main
point is the introduction of a new tool that characterizes the
QSS, and that is based on the fluctuations of the phase of the
magnetization. Mainly on the basis of this tool, we show that
QSS are present also above the critical temperature, a fact
that, up to now, has been overlooked in the literature.

In Sec. II we explain, referring also to Appendix A, the
different classes of initial conditions. In the following three
sections we present our results, focusing, respectively, on the
role of the initial conditions on the properties of the QSS, on
the dynamics of the magnetization using the new tool related
to its phase, and on the QSS that occur at supercritical energy
densities. The discussion, relating ours with previously pre-
sented results, follows in the last section.
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FIG. 1. Time evolution of temperature in the HMF model with
N=1000, �=0.69, �wb� initial conditions. The full bold line is the
average over 20 trajectories. The dotted lines refer to the individual
trajectories that can considerably deviate from the average. Only
considering a larger and larger number of rotators the fluctuations
around the average tend to reduce.
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II. NUMERICAL SIMULATIONS: THE DIFFERENT
CLASSES OF INITIAL CONDITIONS

The equations of motion derived from Hamiltonian �1�
can be written as

�̈i = − m sin��i − �� , �4�

where m= 	m	 and �=arctan�my /mx� are the polar coordi-
nates of the vector m. The form of the equations clearly
emphasizes the mean-field character of the system.

We underline that all our results concern microcanonical
simulations, i.e., they refer to an isolated system. The equa-
tions of motion �4� have been numerically integrated with a
fourth-order symplectic algorithm �27�, with an integration
time step dt=0.1, which ensures an energy conservation with
a relative error of the order of 10−5.

The initial conditions that have been explored in this work
can be characterized by the one-particle distribution func-
tions f�� , p� that the initial values of �i and pi are intended to
realize. In this work we consider initial conditions in which
the value m of the magnetization is initially 0 or 1, and a
single case where it is 0.3. In all cases f�� , p� is factorizable
as g���h�p�. We refer to Appendix A for the expressions of
the different distributions; here we limit ourselves to a few
details. As g��� we always consider a distribution function
that is constant inside a range and 0 outside; the range is
determined by the value of m that one wants to set. For h�p�
we consider distributions with compact support �see Appen-
dix A�. Among the initial conditions here considered there
are the two types that have been mostly used in the literature:
�i� the so-called �wb� initial conditions, characterized by
g���=���� �i.e., m=1� and h�p�=1/ �2pwb� between −pwb and
pwb, with pwb determined by the value of the energy, and �ii�
the uniform �un� initial conditions, characterized by g���
=1/ �2�� in the entire � range �i.e., m=0� and h�p�
=1/ �2pun� between −pun and pun, with pun again determined
by the value of the energy.

III. THE ROLE OF THE INITIAL CONDITIONS
IN THE OCCURRENCE AND IN THE PROPERTIES

OF QUASISTATIONARY STATES

As mentioned in the Introduction, the microscopic one-
particle distribution function f�� , p , t� obeys, in the limit N
→�, the Vlasov equation �23�; in Appendix B we give this
equation for the HMF system. For large values of N it is
expected that the one-particle distribution will deviate from
the solution of the Vlasov equation because of finite size
effects, but these effects should be small. It is immediate to
see that a distribution uniform in � is a stationary solution of
the equation; therefore, if in addition it is possible to prove
its stability, one should expect that for large N such one-
particle distribution will be maintained for a long time, giv-
ing rise to a QSS. Uniformity in � is not a necessary condi-
tion for stable stationarity with respect to the Vlasov
equation, therefore, it is possible to find also nonuniform
distributions that produce a QSS. The two questions related
to this fact are the following: �i� if the system is prepared in

a generic initial condition, i.e., a state that is not a stable
stationary solution of the Vlasov equation, one would like to
know if it reaches such a state, and thus remains in a QSS
before eventually going to BG equilibrium; �ii� when the
system is in a QSS, either by preparation or by reaching it
from a generic initial condition, what are the modalities by
which the system reaches BG equilibrium, and how the mo-
dalities depend on the preparation of the system. The first
question has been recently studied �24,25� for a simple par-
ticular class of initial conditions, that should relax in a short
time to a QSS; answers to the second questions up to now
are only of numerical nature, relying on results of simula-
tions, with the exceptions of some arguments again based on
the Vlasov equation �15,19�. The QSS lasts for a time pro-
portional to a power of N, after which the one-particle dis-
tribution relaxes to the BG equilibrium expression

f��,p� = A−1 exp�−
	

2
p2 + 	M cos�� − ��� , �5�

where the values of the inverse temperature 	 and of the
spontaneous magnetization M are those computed in the mi-
crocanonical or canonical ensembles, and where the normal-
ization factor A is proportional to I0�	M�, the modified
Bessel function of order 0. When M �0, the magnetization
phase � is determined by the boundary conditions. It is use-
ful to stress again that the QSS are not thermodynamical
metastable states, and therefore their properties cannot be
deduced by the study of thermodynamical potentials. In this
paper we provide more extended numerical results on the
relaxation to equilibrium of QSS, especially with the intro-
duction of new tools.

If the dynamics of the system starts from random �i�0�
and pi�0�, it usually does not get trapped into a QSS, so that
the one-particle distribution function rapidly reaches the
form �5�, then the temperature and average magnetization
attain their BG values. Only the preparation in selected non-
equilibrium initial conditions induces a dynamics that gener-
ates a QSS. This is plausible, especially on the basis of point
�i� treated above: apart from the case in which the system is
prepared in a stable stationary solution of the Vlasov equa-
tion, it is not expected that the rapid early evolution of a
generic initial evolution will lead to such a solution.

Usually, the QSS have been studied at energy densities �
slightly below the critical value 0.75, and mostly at the value
0.69. However, it seems that there is no argument that pre-
vents QSS from occurring also above the critical value 0.75.
In fact, in this work we observe that QSS exist even at su-
percritical energy densities.

A. Water bag initial conditions

In the �wb� initial conditions, as put in evidence in the
corresponding distributions in Appendix A, the initial angles
are all set to zero and the initial velocities are sampled from
a uniform distribution centered on zero; the initial configu-
ration has magnetization m=1, and therefore T=2�, as can
be seen from Eq. �3�. Simulations at energy densities in the
range between 0.68 and 0.75 have shown that the tempera-
ture falls onto a nonequilibrium plateau value Tqss within a
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few time steps �16�. However, the N-dependent value of Tqss
is an average over many trajectories, i.e., over many realiza-
tion of the �wb� initial conditions. For example, if �=0.69,
the statistical mechanics solution of the model gives an equi-
librium temperature Teq=0.475, while Tqss
Teq. Corre-
spondingly �see Eq. �3��, the initial unitary magnetization
gets very rapidly a small value, close to zero, that character-
izes the QSS, and, after a time diverging with N, reaches the
equilibrium value M =0.31. A characteristic of the �wb� ini-
tial conditions is the presence of large sample-to-sample
fluctuations in the relevant observables �temperature and
magnetization�. Figures 1–3 illustrate this intrinsic random-
ness in the typical case of �=0.69: Figure 1 shows the tem-
perature time course for 20 different trajectories with N
=1000, together with the average time course; Fig. 2 plots
the dispersion, at different times, of the temperature: the dis-

persion shrinks only when the system relaxes to BG equilib-
rium. Fluctuations around the average temperature of the
QSS decrease with increasing N; in addition, when N in-
creases, the average temperature of the QSS decreases and
tends to the value 0.38, corresponding, according to Eq. �3�,
to zero magnetization. Figure 3 puts in evidence the decrease
of the average QSS temperature when N is increased, and it
shows, for the largest N value, the time fluctuation of the
QSS temperature of a single trajectory. In Ref. �28� one can
find a study of the dependence of the average QSS tempera-
ture as a function of the initial magnetization m.

B. Other classes of initial conditions and the attracting
velocity distribution function

The �wb� initial conditions are implemented with a ran-
dom extraction of the initial velocities from a uniform distri-
bution centered around zero. However, it is possible to assign
deterministically the initial velocities with the prescription
pi=−pwb+2pwb�i−1/2� /N, i=1,2 , . . . ,N, with pwb defined in
Appendix A as a function of the energy density �. We have
called this special initial condition �iwb� �they had been in-
dependently introduced in Ref. �29��. For N→� any realiza-
tion of the �wb� should not differ appreciably from the �iwb�.
We have found that this particular realization of the water
bag conditions does not produce time fluctuations of the dy-
namical temperature. Moreover, in this case, the QSS tem-
peratures do not depend on N and are very close to the large
N value of the average QSS temperature observed in the case
of the mostly used �wb� initial conditions �30�.

Besides the absence of fluctuations, it is remarkable that,
at variance with the �wb�, the QSS arising from the �iwb�
initial conditions behave very similarly to those produced by
the two classes of initial conditions that we have studied, in
which the initial magnetization m is set equal to zero. In fact,
the �iwb�, the �un�, and �tr� initial conditions all share the
following properties: �i� the magnetization in the QSS is
given, as a function of N, by m2N−1/2 �thus it is asymp-
totically zero for large N�, and, consequently, T2�−1
+4/N; �ii� the initial velocity distribution evolves in a short
time toward an attracting distribution, whose shape is ap-
proximately a semiellipse �see Fig. 4�.

The velocity distribution function becomes Maxwellian
when eventually the system goes to BG equilibrium, leaving
the QSS. Following this observation, one could represent the
function h�p�, during the QSS, exactly with a semiellipse
�that will therefore be equal to the elliptical �el� initial con-
ditions described in Appendix A�. The two parameters �i.e.,
the semiaxes of the ellipse� are fixed by the energy density
and by the normalization condition, and the shape is fixed. It
is not surprising that, as we show in Appendix B, at �
=0.69 the elliptic velocity distribution function satisfies the
condition for its stability as a stationary solution of the Vla-
sov equation �15,31�, if ��0.625. In Ref. �15� a similar at-
tracting distribution was found, although it was not param-
etrized as an ellipse and its Vlasov stability through Eq. �B3�
was not studied. It should be remarked that the velocity dis-
tribution function evolves in time. Nevertheless, during the
QSS, the evolution is very slow, and the elliptical represen-
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FIG. 2. Dispersion of the temperature around the average in the
HMF model, �wb� initial conditions. Data refer to the case of N
=1024 rotators, �=0.69; each dot is an average over 100 time steps.
Note that, for this number of rotators, after the spread from the
initial value �curves corresponding to t=3 and t=5�, temperatures
fall in a large interval up to times 10 000 �approximately, the life-
time of the quasistationary state�. Only over time 100 000, when the
system relaxes toward equilibrium, they tend to concentrate around
the equilibrium value of 0.475, expected for the energy density here
considered. Short trajectories have been simulated with a smaller
time step, as indicated.
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FIG. 3. Time evolution of the average temperature as a function
of N, in the HMF model, for the �wb� initial conditions. Note that
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tation will remain a good approximation until the relaxation
toward BG equilibrium starts, when tails in the distribution
begin to develop.

It is then clear that, if the elliptical velocity distribution is
chosen as the initial condition �the �el� initial conditions of
Appendix A�, the system will be prepared in a slowly evolv-
ing QSS, without any initial transient characterized by a
shorter time scale.

In the following section we show, in particular, the occur-
rence of the QSS with elliptical velocity distribution function
when the dynamics starts from the �iwb� initial conditions.
We then study the lifetime of this QSS as a function of N,
introducing a new determination of this dependence on the
basis of the fluctuations of the phase of the magnetization.
Furthermore, we will show that QSS are present also at su-
percritical energy densities.

IV. THE DYNAMICS OF THE MODULUS AND OF THE
PHASE OF THE MAGNETIZATION

A. Relaxation dynamics of the magnetization and parallel
evolution of the velocity distribution

In this section we follow the time evolution of the modu-
lus of the magnetization, in parallel with the evolution of the
one-particle distribution function f�� , p� and of its integral
over the positions, i.e., the velocity distribution function.
This is done for the �iwb� initial conditions at �=0.69, with
N=10 000. As we pointed out, in this case the equilibrium
magnetization is equal to 0.31.

We show in Fig. 5 the dynamics up to time 106. The
quasistationary state is characterized by a small value of the
magnetization around 0.02, that persists until times of about
4�105, when the relaxation toward equilibrium starts. As
shown in the inset of Fig. 5 the magnetization modulus, ini-
tially equal to 1, falls to small values in O�1� time, with
some bounces before setting to the above-mentioned value of

about 0.02. The arrows in Fig. 5 denote the times at which
the snapshots shown in Fig. 6 are taken. This figure shows
the evolution of the one-particle distribution function f�� , p�
and of the velocity distribution function. The first one is
represented plotting on the �� , p� plane the canonical coordi-
nates of all the rotators. One can see that during most of the
duration of the QSS, namely, from a time of about 104 up to
the time when relaxation to BG equilibrium begins, around
4�105, the velocity distribution function is characterized by
the elliptical shape, illustrated in Fig. 4. The QSS ends when
the semielliptical distribution starts to develop tails and
eventually becomes a Maxwellian. Correspondingly, the de-
veloping finite magnetization can be spotted in the dishomo-
geneous appearance of the left-hand plot of panel �h� of Fig.
6.

When the dynamics starts with the unified �un�, �tr�, and
�el� initial conditions, the evolution of the velocity distribu-
tion functions is practically the same as that presented in Fig.
6 �in the last �el� case there is not even an initial transient�. In
these cases the magnetization m is practically 0 from the
beginning.

The previous results indicate that the QSS arising from
these four classes of initial conditions can be described by an
almost-zero magnetization state, characterized by a semiel-
liptical velocity distribution function. In the next section the
QSS is further characterized by a new quantity, the angular
frequency of the magnetization, determined by the dynamics
of the argument of the magnetization.

B. Quasistationary states and angular frequency
of the magnetization

In the QSS the argument � of the �very small in modulus�
magnetization displays a strongly fluctuating behavior, cor-
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FIG. 5. Time evolution of the modulus of magnetization of the
HMF model, �iwb� initial conditions. Note that for this class of
initial conditions the initial magnetization abruptly falls on a very
small value plateau, which tends to zero, increasing N, approxi-
mately as N−1/2. A null magnetization is associated to the quasista-
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=0.31. The arrows indicate times at which snapshots of the  space
are shown in the corresponding panels of Fig. 6.
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responding to frequent and abrupt changes in direction. Dur-
ing the relaxation toward equilibrium, while the modulus in-
creases toward its equilibrium value, the fluctuations are
much less violent. This different behavior is plausible, con-
sidering the large ratio between the modulus of the equilib-
rium magnetization and that of the QSS magnetization. We
found that this difference can be exploited to give a conve-
nient characterization of the QSS. In particular, indicating
with dt the integration time step, we define the following
cumulative quantity:

�m�t� = �
n=0

t/dt

	arg�m��n + 1�dt�� − arg�m�ndt��	 . �6�

This is the sum of the absolute values of the angular dis-
tances spanned by the magnetization vector during an inte-
gration time dt, sampled up to time t. Let us note that this
observable is monotonically increasing with t, but it is also
time-step dependent: for given t, it is monotonically not de-
creasing if the sampling interval dt is decreased. Figure 7,
that shows both the modulus m�t� and the quantity �m�t�,

refers to a typical trajectory started from the �el� initial con-
ditions, i.e., directly from the QSS. From the plot it is evi-
dent that there is a crossover between two regimes, passing

-2

0

2

-2

0

2

-2

0

2

-2 0 2

-2

0

2

-2 0 2-2 0 2

0

0.2

0.4

0.6

-2 0 2
0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

a) t=0.1

b) t=1

c) t=100

d) t=10000

g) t=500000

h) t=1000000

e) t=100000

f) t=200000

FIG. 6. Time evolution of the  space and, in parallel, of the distribution of velocities, �iwb� initial conditions. The run is the same as
that reported in Fig. 5: N=10 000, dt=0.1, �=0.69, where the corresponding times are marked by arrows. Clearly, after a very short initial
time the velocity distribution reaches a shape that is easily fitted to an elliptic profile. The elliptic distribution is maintained until the
dynamics is in the quasistationary state. After, approximately, t=4�105 the distribution starts to develop tails and, after a transient, it
becomes evidently Gaussian, in the equilibrium state. Data in panel �h� have been fitted to the Maxwellian, y=C exp�−�x2 /2T��, the fitted
temperature result is 0.475, as expected.

0

2000

4000

6000

8000

σ m
(t

)

0 2×10
4

4×10
4

6×10
4

8×10
4

1×10
5

t

0

0.1

0.2

0.3

0.4

m
(t

)

FIG. 7. Time evolution of the function �m�t� and of the modulus
of the magnetization, �el� initial conditions. Data refer to the case
N=1024, �=0.69.

CAMPA, GIANSANTI, AND MORELLI PHYSICAL REVIEW E 76, 041117 �2007�

041117-6



from the QSS to the BG equilibrium state. The crossover is
characterized by the change in the derivative �m�t� of �m�t�.
We find that it is possible to fit the observed time evolution
of �m�t� with

�m�t� = �m,qst − Ct2 �7�

in the QSS, and with

�m�t� = �m,eqt �8�

in the equilibrium state. Therefore,

�m�t� = �m,qs − 2Ct �9�

in the QSS, and

�m�t� = �m,eq �10�

in the equilibrium state. We found that �m,qs, the derivative
in zero of �m�t�, depends on the energy density, but appears
to be independent of the system size N; on the contrary �m,eq
decreases as N increases, going as the inverse square root of
N, while C depends both on N and the energy density.
Namely, it increases with � and decreases with N. In Fig. 8
we show both m�t� and �m�t� for a given N value at �

=0.69, while in the left-hand panel of Fig. 9 we plot, for the
same energy density, the behavior of �m�t� for different val-
ues of N. In all cases we start from �el� initial conditions.
According to Eqs. �9� and �10�, and as Figs. 8 and 9 show,
�m�t� linearly decreases with time in the QSS, and then tends
to level off, when the system reaches the equilibrium state.
From the left-hand panel of Fig. 9 it is also possible to see
the mentioned independence on N of �m,qs, while the differ-
ent slopes prove the marked dependency on N of C in Eq.
�9�.

The change of behavior implicit in the passage from Eq.
�9� to Eq. �10� seems to be much more clear cut than the
gradual increase of the magnetization �or of the temperature�
at the start of the relaxation to equilibrium. Therefore, the
time evolution of �m�t� can be used to define the lifetime of
the QSS in an easier way. In fact, let us define this lifetime
by the time in which the linear fit of �m�t� in the QSS ex-
trapolates to zero. Because of the independence on N of
�m,qs, this intercept is inversely proportional to C. The right-
hand panel of Fig. 9 plots the dependence of C on N, and
from this plot it is possible to reconstruct the scaling law of
the QSS lifetime. Values of C�N� have been obtained for
several trajectories for each N, and in the plot we give aver-
age values with standard deviation error bars. From the fit-
ting line we can evaluate the scaling exponent of the depen-
dence on N of C�N�. The QSS lifetime, as we have just
defined it, is inversely proportional to C, and therefore its
scaling exponent with N is just the opposite of that of C�N�.
We obtain the value 1.7±0.1, in agreement with previous
determinations. Similar graphs are obtained for the other
classes of initial conditions that rapidly evolve to the semiel-
liptical distribution.

The angular frequency of the magnetization, introduced
here, provides a very convenient operational definition of the
QSS. The latter have been searched for, until now, exclu-
sively at subcritical energy densities, i.e., for ��0.75. How-
ever, the observations presented in the next section, based on
the quantities just introduced, indicate that QSS can be
present also at supercritical energy densities.

0 1×10
5

2×10
5

3×10
5

4×10
5

5×10
5

t

0

0.1

0.2

0.3

0.4

0.5

ω
m

(t)

m(t)

FIG. 8. Time evolution of magnetization and of the angular
frequency in a typical case: N=8192, �=0.69, �el� initial conditions,
average over 10 trajectories.

0.0 5.0×10
5

1.0×10
6

1.5×10
6

t

0

0.1

0.2

0.3

0.4

0.5

ω
m

(t
)

1×10
3

1×10
4

N

1×10
-7

1×10
-6

16384

81924096

2048

C
(N

)

FIG. 9. Left-hand panel, time evolution of angular frequency of magnetization: N dependence, �=0.69, �el� initial conditions. Right-hand
panel, dependence on N of the parameter C. Error bars represent standard deviations. The power-law dependence on N of the QSS lifetime
can be estimated from the slope of the linear regression of C�N�. The fitted exponent of C�N� is −1.7±0.1.

LONG-TIME BEHAVIOR OF QUASISTATIONARY STATES … PHYSICAL REVIEW E 76, 041117 �2007�

041117-7



V. SUPERCRITICAL QUASISTATIONARY STATES
OF THE HMF

The behavior of �m�t� shows that, by starting from the �el�
initial conditions, the system can be set in a QSS even at
supercritical energy densities. In Fig. 10 we show the time
evolution of �m�t� and that of m�t� at the supercritical energy
density �=0.8. Note that, also in this case, it is possible to
distinguish two regimes. The crossover is around the time
2�105. Now �m�t� crossovers from a logarithmic decay
with time to a constant, when the system relaxes to BG equi-
librium. In this supercritical case the equilibrium value of the
magnetization is zero and the relaxation to equilibrium is
characterized by the velocity distribution function that be-
comes Maxwellian; this happens at the crossover of �m�t�, as
we have checked. Although at the crossover the magnetiza-
tion modulus should remain very small, in Fig. 10 there is
trace of a small relaxation, possible signature of a finite size
effect.

In Fig. 11 we show that the slope of �m�t� in the QSS is
substantially independent of system size, but the function is
multiplied by an N-dependent factor, as indicated by the par-
allel translation of the signal. This is the opposite behavior
with respect to the subcritical case. In addition, note the

logarithmic time axis, that points, in the supercritical case, to
an exponential increase of the QSS lifetime with the system
size.

VI. DISCUSSION

We would like to begin this section with some comments
on the relation of the QSS in the HMF model with the results
that have been obtained for self-gravitating systems. The
confinement of these systems makes it possible to have local
extrema of the thermodynamic potential, entropy or free en-
ergy, depending on the ensemble under consideration, micro-
canonical or canonical; this implies the existence of meta-
stable states �see, e.g., Refs. �32,33��. The lifetime of these
metastable states is proportional to the exponential of the
thermodynamic potential barrier that separates them from the
global extremum �34�; this barrier in turn is proportional to
the number of degrees of freedom, i.e., to the system size.
This is analogous to what has been found for metastable
states in simple magnetic systems �10,35�. We have already
emphasized that the QSS of the HMF model are not meta-
stable states, since they do not correspond to local extrema of
the thermodynamic potential, and their robustness is of dy-
namical origin. However, it is still possible to argue a con-
nection with some results concerning confined self-
gravitating systems. In fact, it has been found that collapse
and explosion in these systems �the two processes describing
the transition, respectively, between the uniform and core-
halo structure and vice versa� can be extremely slow, their
duration being proportional to the exponential of the fre-
quency ratio between fast and slow modes �36,37�. These
transitions are considered in the cases where the state, from
which the system departs, has lost its �meta�stability charac-
ter, and therefore the situation is closer to the QSS of the
HMF model. Details are obviously different, due to the very
different nature of the systems: in the collapse of the self-
gravitating system it is not the formation of core and halo
structures that takes the longest time, but rather the exchange
of energy between core and halo particles, to reach equilibra-
tion. In the HMF model it seems that the formation of the
magnetized configuration, required by BG equilibrium, is at-
tained only in the final stages of the QSS, at the same time of
the final equilibration of the velocities in a Maxwellian dis-
tribution. Below we comment on how finite size effects are
responsible for the approach to BG equilibrium, when we
look at the HMF model in the framework of the Vlasov
equation. However, looking from another point of view, it
would be interesting to see if slow energy exchanges be-
tween fast and slow modes are the main cause of the long
lifetime of QSS, analogously to the mentioned transition in
self-gravitating systems, in spite of the cited differences.

In this paper we have considered different classes of ini-
tial conditions. We have observed that at long times, before
the relaxation to equilibrium, for the classes of initial condi-
tions with m�0�=0 and for the �iwb� initial conditions, which
have m�0�=1, the velocity distribution function acquires an
elliptical shape; this is shown in Fig. 4. This special func-
tional form is a stable solution of the Vlasov equation, as
shown in the Appendix B and in Fig. 13. These results are
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consistent with the attracting character of the elliptic velocity
distribution function.

The quasistationary states of the HMF have been phenom-
enologically characterized through the dynamics of both the
magnetization modulus and phase. These states are charac-
terized by the small value, O�N−1/2�, of the magnetization
modulus and by a linear decay in time of the angular fre-
quency of the magnetization, an observable used here for the
first time, that has been very useful to revisit the power-law
behavior of the QSS lifetimes as a function of N. Moreover,
this observable was effective in showing that long-lasting
dynamical states, quite similar to the subcritical QSS, are
present also at supercritical energy densities; it has been
shown that in this case the time scale for the approach to BG
equilibrium is much greater.

Recent work on the short-time behavior of the HMF
model �25� has studied the dynamics on the basis of an en-
tropy functional which is suitable for systems in the colli-
sionless approximation �26�, which is generally valid for
mean-field systems, and where the dynamics satisfies the
Vlasov equation. Actually, the study was restricted to the
cases where the initial one-particle distribution function has
only two values: a constant in a given region of the one-
particle phase space, and zero outside �i.e., the authors con-
sider only uniform initial distribution functions, realizing dif-
ferent initial magnetizations�. The dynamical mixing in the
one-particle phase space will lead, in a short-time scale �fast
relaxation�, to a QSS, characterized by a one-particle distri-
bution function that is a stable stationary solution of the Vla-
sov equation, and that maximizes the entropy functional; the
particular shape of this distribution function depends on the
initial magnetization �38�. Numerical simulations, limited to
very short times, were performed for comparison with the
analytical calculation: these show that, at the energy density
�=0.69, the QSS has a zero magnetization, unless the initial
value m�0� is above a critical value around 0.9 �25�. Finite
size effects, acting as a perturbation term in the Vlasov equa-
tion, will then be responsible, at large times, of the approach
to the BG equilibrium. Our uniform initial distribution func-
tion, with m�0�=0, belongs to the class studied in Ref. �25�.
In this particular case the initial distribution is already the
stable stationary solution maximizing the entropy functional,
and there should be no fast relaxation. This seems to contra-
dict our numerical results, obtained also in Ref. �15�, show-
ing that, when we start from the �un� initial conditions, the
distribution function has a semielliptical shape while the sys-
tem is in the QSS. Then, to have another comparison, we
have investigated also a case with initial magnetization be-
tween zero and one. The corresponding uniform initial dis-
tribution is the one called partial magnetized �pm� in Appen-
dix A. We have considered the case m�0�=0.3, and Fig. 12
shows the distribution at different times. In this case we find
that, during the QSS, the distribution function maintains the
shape reached after the first fast relaxation, that in turns
agrees with that obtained in Ref. �25�. The different behavior
between the �un� and the �pm� initial conditions can therefore
be summarized in the following. The dynamics starting from
the �pm� conditions has a fast relaxation toward a QSS, with
the velocity distribution slowly evolving, afterwards, to the
BG equilibrium form. Starting from the corresponding uni-

form �un� conditions, where fast relaxation does not take
place, the velocity distribution has nevertheless an evolution
toward the elliptical form, although quite slower than the fast
relaxation; from there, the distribution slowly evolves toward
BG equilibrium.

One can argue that a possible explanation of these differ-
ent behaviors can be ascribed to a different influence of finite
size effects on both cases, according to the following.

As noted before, once in the QSS, the velocity distribu-
tion evolves very slowly, passing through a series of stable
stationary states of the Vlasov equation �15�. Finite size ef-
fects are responsible for this very slow dynamics. As we
have checked numerically, when this slow evolution drives
the velocity distribution to a situation where the stability
condition �Appendix B� is no more satisfied, a faster ap-
proach to BG equilibrium takes place. However, finite size
effects are present also during the initial dynamics. They
have been studied in Ref. �39�, again on the basis of the
Vlasov equation, but without any reference to entropy func-
tional; i.e., through a purely dynamical approach. It has been
shown that the one-particle distribution function is modified
by a diffusion process. The corresponding diffusion coeffi-
cient is proportional to 1/N, but the proportionality coeffi-
cient can be extremely large for the �un� initial distribution
function. This would tend to modify the distribution function
rapidly. It would be interesting to perform the same calcula-
tion in the case of the elliptic function, to have a confirma-
tion that in this case the proportionality coefficient is much
smaller.

The classes of initial conditions considered in this work
all share the property that the initial velocity distribution
does not have tails, being with compact support. This seems
to be a requisite for the formation of QSS, at least for the
cases in which the initial angle distribution is uniform; in
particular, initial conditions at subcritical energy, e.g., �
=0.69, in which the angles are uniformly distributed, i.e.,
m�0�=0, and the velocities are distributed according to a
Maxwellian, with an out-of-equilibrium temperature, relax-
ing rapidly toward BG equilibrium. This numerical result is
supported by the stability analysis described in Appendix B
applied to this situation, that shows that the Maxwellian ve-
locity distribution function, associated to a uniform angle
distribution, does not satisfy the stability condition if the
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energy � is below the critical value 0.75 �15�. However, it is
to be seen what happens for other classes of initial condi-
tions. Here we want to cite an interesting study where both
angles and velocities are initially distributed according to a
function of the same form of that obtained at equilibrium,
i.e., as in Eq. �5�, but with the values of the parameters
different from those at equilibrium �40�. The authors find
that, depending on the values of the energy and of the initial
magnetization, not only out-of-equilibrium stationary states
can be realized, but also out-of-equilibrium periodic states
are reached, in which the magnetization value oscillates.
These results give their contribution to the evidence that,
although a good deal of systematic studies have been per-
formed on the HMF model, many issues still must be satis-
factorily clarified.
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APPENDIX A: THE DISTRIBUTION FUNCTIONS
RELATED TO THE DIFFERENT CLASSES

OF INITIAL CONDITIONS

We collect in this appendix the distributions describing
the initial conditions studied in this paper. Let us denote with
��x� the characteristic function of the segment �−x ,x�, i.e.,
the function which is equal to 1 inside this segment and 0
otherwise. The distributions f�� , p�=g���h�p� are the follow-
ing. Except in the first case, where the initial magnetization
m is equal to 1, and the third case, where it has a generic
value, in the others it is equal to 0.

�i� Water bag �wb�,

g��� = ����, h�p� =
1

2pwb
��pwb� , �A1�

with pwb determined by the energy density � by pwb=�6�.
�ii� Uniform �un�,

g��� =
1

2�
, h�p� =

1

2pun
��pun� , �A2�

with pun given by pun=�6��− 1
2

�; this case is possible if �
�1/2.

�iii� Partial magnetized �pm�,

g��� =
1

2�m
���m�, h�p� =

1

2ppm
��ppm� , �A3�

with ppm given by ppm=�6��− 1
2 + 1

2m2�, and �m by the solu-
tion of the equation �sin��m� /�m�=m; this case is possible,
for a given value of m, if ��1/2−m2 /2.

�iv� Triangular �tr�,

g��� =
1

2�
, h�p� = �b −

b − a

ptr
	p	���ptr� , �A4�

where the parameters ptr, a, and b�a satisfy the two rela-
tions �b+a�ptr=1 and �b+3a�ptr

3 =12��− 1
2

�; this case is pos-
sible if ��1/2. Differently from the other cases considered
in this work, at a given energy � there remains a free param-
eter. The form of the distribution function h�p� is that of a
box surmounted by a triangle.

�v� Semielliptical �el�,

g��� =
1

2�
, h�p� =

2

�pel
�1 −

p2

pel
2 ��pel� , �A5�

with pel given by pel=�8��− 1
2

�; this case is possible again if
��1/2.

We have also considered �wb� initial conditions where the
corresponding function h�p� is not realized through the usual
random number generations, but the N initial velocities are
given by the values pi=−pwb+2pwb�i−1/2� /N, i
=1,2 , . . . ,N. This special initial condition has been called
�iwb�. Loosely speaking, for N→� any realization of the
�wb� should tend to �iwb�.

APPENDIX B: THE STABILITY OF THE ELLIPTIC
VELOCITY DISTRIBUTION FUNCTION AS A

STATIONARY SOLUTION OF THE VLASOV EQUATION

The Vlasov equation for the one-particle distribution
function f�� , p , t� of the HMF system is given by �15,31�

� f

�t
+ p

� f

��
−

�U

��

� f

�p
= 0, �B1�

where U is actually a function of �� , t� and a functional of f
given by

U = −� d�dp cos�� − ��f��,p,t� . �B2�

It is immediate to see that any distribution function which is
homogeneous in �, i.e., any distribution of the form f�� , p�
=h�p� / �2��, is a stationary solution of the Vlasov equation.
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The necessary condition for its stability can be expressed
using the normalized distribution h�p�; the condition is
�15,31�

1 +
1

2
�

−�

+� h��p�
p

dp � 0. �B3�

In the case of the �el� initial conditions, from the expression
for h�p� given in Appendix A we obtain

1 −
1

�pel
3 �

−pel

pel dp

�1 − � p
pel

�2
� 0, �B4�

that, after integration, gives: 1− 1
p0

2 �0. Using the relation
between pel and � given in Appendix A, we obtain that sta-
bility requires ��

5
8 =0.625. Therefore the elliptic velocity

distribution function is unstable if the energy density is be-
low 0.625. Figure 13 numerically confirms, in a concrete
case, this fact.
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